
설계 제안서

'실이(SIRI)야' of ARCHIFFECT, 가천대학교 건축공학과

2018 구조물 내진설계 경진대회

SESMIC STRUCTURAL DESIGN CONTEST 2018

"목표 성능수준을 고려한 구조물의 내진설계"

가천대학교 건축공학과 교수

자문의원

김대진 (4학년)

- 지진파 분석
- MIDAS및 3D CAD모델링
- 구조해석 및 분석

정성호 (4학년)

- 제작시간 계산 및 단축
- 공법 개발

박지원 (3학년)

- 공정표 작성
- 내역서 작성

서다은 (3학년)

- 아이디어 창출
- 아이디어 조합 및 개 선
- 도면 작성 및 실험

규정분석 및 설계목표

1) 목표 지진하중

- 지반종류 : S1 암반 지반

- 지진구역:I

- 지진구역 계수(Z): 0.11g

- 위험도계수(I)

재현주기	위험도계수(I)						
	50년	100년	200년	500년	1,000년	2,400년	
위험도계수(I)	1.0	1.5	2.0	2.7	3.8	5.4	

2) 성능목표

-본 대회에서 작품은 '내진특등급'으로 설계, 제작되어야 한다.

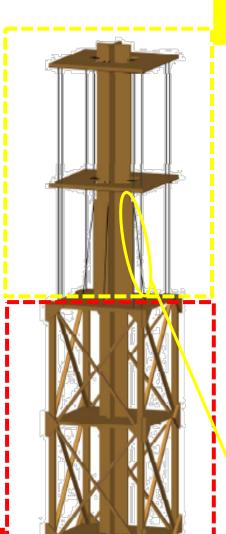
설계지진	내진성능수준					
교계시년 재현주기(년)	기능수행	즉시복구	장기복구/ 인명보호	붕괴방지		
500	내진특등급	내진특등급	내진특등급			
2400				내진특등급		

3) 설계목표

"목표 성능수준을 고려한 구조물의 내진설계" → 0.7g 에서 붕괴

설계 CONCEPT

<가새와 코어>


- 각 층 플레이트에 코어 부착(5cm)
- X자 형태의 가새 적용

<보강 플레이트 삼각>

- 기둥과 플레이트 에 접착
- → 플레이트의 탈락 방지 및 일체성 확보

1, 2층(내진)

3, 4층 (제진)

<플레이트>

- 코어와 플레이트를 실로 연결 4
- → 플레이트의 수평유지
- → 상,하 흔들림 방지
- → 비틀림 복원

- 플레이트를 실로 연결
- → 실의 장력 으로 x, y축의 유 연한 거동
- → 부재 감소로 인한 공기 단축
- → 비틀림 복원

<코어 및, 코어 전도방지 실 >

- 크기가 다른 3층(10cm), 4층(6cm) 코어
- 전도 방지를 위해 3층 코어와 플레이트를 실로 연결

단면구조 – 기둥, 코어, 물성치

1. 기둥

$$I = \frac{10 \times 10^3}{12} - \frac{2 \times 2^3}{12} = 832 \text{mm}^2$$

- X축과 Y축의 단면 2차 모멘트가 동일
- 강축과 약축이 없어 단면성능 우수

Ix =
$$\frac{8 \times 12^3}{12}$$
 = 1152mm²
Iy = $\frac{12 \times 8^3}{12}$ = 512mm²

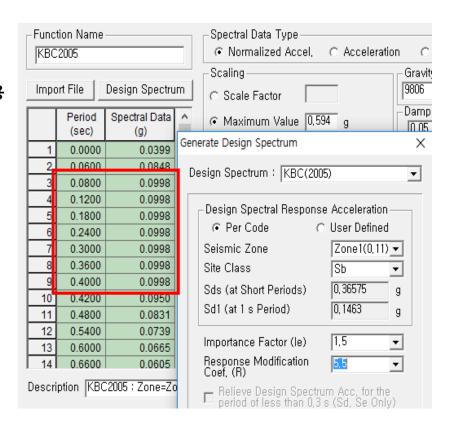
- X축과 Y축의 단면 2차 모멘트 값의 차이로 인한 강축 과 약축 발생
- 이로 인한 단면 부재 성능이 약축에 대하여 취약

2. 코어

Plate에 의한 십자코어	•	코어의 일체성 확보 가능 전단력에 의한 강성이 우수
Plate와 Strip 기둥 및 가새에 의한 코어	•	코어의 일체성 부족 (Plate와 Strip의 탈락 현상 발생 우려)

3. 물성치

MDF	처짐에 의한 체크(10회 실험 평균) $E = \frac{PL^3}{3\delta I}$	• 약 2181 MPa
면줄	Hooke's law에 의한 체크(6회 실험 평균) $E = \frac{P}{A} / \varepsilon$	• 약 456 MPa


지진파 생성

1. 지진파 생성(내진설계기준 공통적용사항)

- 1) 목표 최대 지진하중(2400년) S = Z x I = 0.11g x 5.4 = 0.594
- MIDAS 버전에 의한 KBC2005로 대체 : S1 = Sb (전단파속도 760m/s 이상)로 적용
- Maximum Value 0.594g 가 되도록 스케일 확장
- 중요도계수 = 1.5(내진특등급)
- 반응수정계수 = 5.5 (중간 모멘트 골조를 가진 이중 골조 시스템 철근콘크리트전단벽)
- 2) 붕괴 최대 지진하중 S = 0.7g
- Maximum Value 0.7g 가 되도록 스케일 확장
- ※ 다른 조건은 위와 동일, 그림과 같은 방법으로 0.7g 응답스펙트럼 생성
- 3) 생성된 지진파 입력 후 MIDAS를 이용한 구조물 고유주기 및 해석 수행

2. 지진파 결과 분석

- T0 = 0.08 sec
- TS = 0.4 sec
- → 구조물의 응답스펙트럼 가속도는 0.08 sec ~ 0.4 sec에서 최대가 되므로 설계 시 구조물의 고유주기를 0.08 sec ~ 0.4 sec 사이에 오도록 한다.

구조물의 고유주기 및 해석

1. 구조물의 고유주기

	Original Shape	Mode1	Mode2	Mode3	Mode4
Mode Shape`					
고유주기	-	0.2444 sec	0.2175 sec	0.1721 sec	0.1720 sec

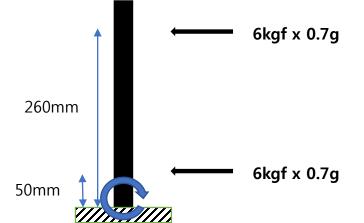
2. 해석

- 고차 모드가 될수록 단주기화 됨
- 3차 모드와 비슷한 변형이 일어남
- 건물의 고유주기 = 0.1721 sec (0.08 sec ~ 0.4 sec)

구조물의 구조성 결과

1. 허용 변위 (S=0.594g)

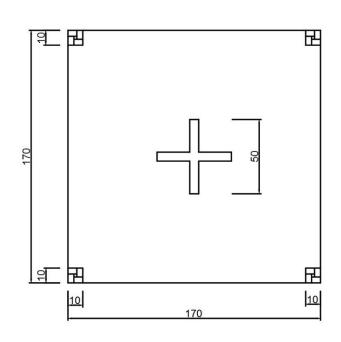
RX(RS)	5F	206.00	1.00	0.0100	272	2.9505	1.9670	0.0095	ОК
RX(RS)	4F	43.00	1.00	0.0100	409	0.4840	0.3227	0.0075	ОК
RX(RS)	3F	163.00	1.00	0.0100	426	1.4525	0.9683	0.0059	ОК
RX(RS)	2F	206.00	1.00	0.0100	50	0.7205	0.4803	0.0023	ОК
RX(RS)	1F	203.00	1.00	0.0100	8	0.1291	0.0861	0.0004	ОК

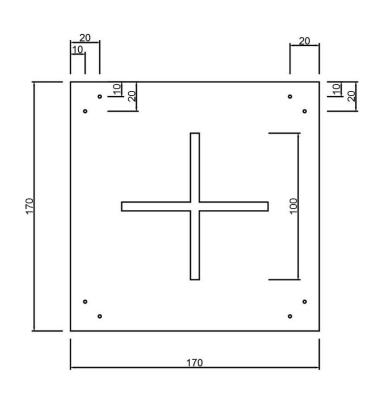

※ 코어 크기 변동에 따른 Story 설정

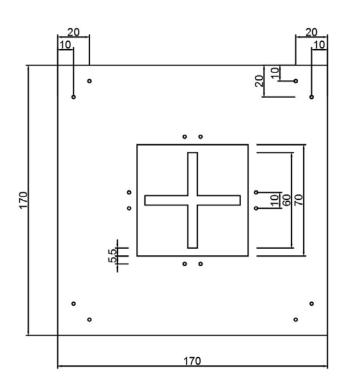
- 1) 최대 층간 변위 (S=0.594g)
- 1.9081mm < 2mm (KBC2005에 따른 허용층간변위 만족)

2. 코어 전도모멘트

- 0.7g일때 3~4층 코어 사이즈가 줄어드는 곳(10cm → 6cm)의 전도 모멘트에 의한 붕괴

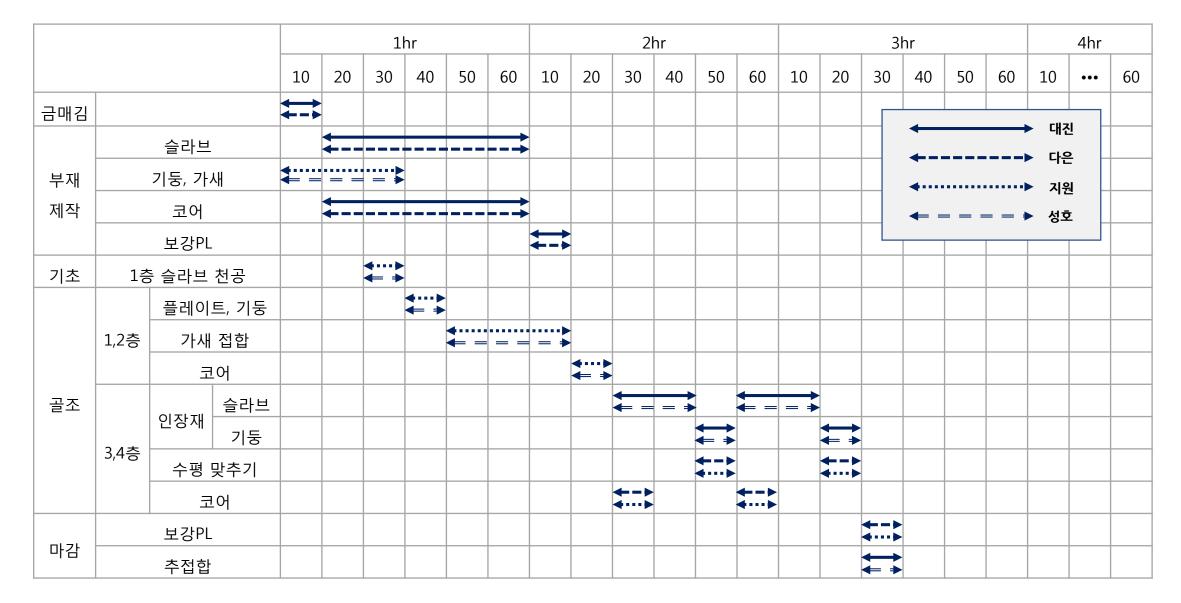

지진하중	전도 모멘트		
S = 0.594g	1286.28 kgf· mm		
S = 0.7g	1515.82 kgf· mm		




- 설계 전도모멘트(6cm 코어부분)
- $= 6 \times 0.7 \times 260 + 6 \times 0.7 \times 50 = 1302 \text{ kgf} \cdot \text{mm}$
- 1286.28 < 1302 < 1515.82 이므로
- 붕괴 목표하중인 0.7g에 도달 하면 코어의 연결부가 탈락되어 붕괴된다.

설계도면

1F, 2F 바닥


3F 바닥

4F, 5F 바닥

7

공 정 표

내 역 서

품명	규격	수량(개)	단가(백 만원)	합계
MDF Strip	400mm*400mm*6mm	24	10	240
MDF Plate	200mm*200mm*6mm	8	100	800
면줄	1ø*600mm	12	10	120
A4지	297mm*210mm	2	10	20
접착제	착제 20g		200	400
	1,580			